ver.2005.7.15 JASRI 宇留賀、谷田

Ver. 2005/7/15からの変更箇所

- 光軸プログラムの改良に伴う全面的な改定
- 第2ミラー、TCSLIT2、TCSLIT3のスキャン及び4DSLITのスキャンの省略取消

Ver. 2001/5/10からの変更箇所

- 光軸再調整に伴う全面的な改定
- 第2ミラー、TCSLIT2、TCSLIT3のスキャン及び4DSLITのスキャンの一部の省略
- 第1ミラー、第2ミラーの傾き角原点の補正(両者とも-0.15mrad補正)

Ver. 2000/3/29からの変更箇所

- 1-4項の改定
- 2-1項の改定
- 2-3項の改定
- 2-6項の改定

目次

1 概要

2 分光器の結晶面及びミラーの傾き角度調整手順

1 概要

1-1 光学素子及び計測系の配置

・光学ハッチ内:TCSLIT1→第1ミラー→分光器→TCSLIT2→第2ミラー→TCSLIT3

実験ハッチ内:→4DSLIT→IOイオンチェンバー→試料→Iイオンチェンバー

- TCSLIT:光学ハッチ内4象限スリット
- ◆ 4DSLIT:実験ハッチ内4象限スリット
- IOイオンチェンバー:入射光強度測定用イオンチェンバー
- Iイオンチェンバー:透過光強度測定用イオンチェンバー

1-2 調整の流れ

- 主な輸送系調整は、以下の3種類の操作である。
 - 分光器の結晶面切替え
 - ミラーの傾斜角変更
 - 上記操作の両方
- 両操作に伴い、分光器よりも下流側でビームの高さ変動が起こる。
- それに対処するため、TCSLIT2よりも下流側の光学素子の高さ調整を行う。
 - 調整機器と順序は下記の通り
 - 第2ミラー→TCSLIT2→TCSLIT3→実験ハッチ内定盤

- 高さ調整は実験ハッチ内定盤に関してはzスキャンを行って最適位置を求めることにより行う。
 - 定位置出射調整は、分光器第一結晶のあおり角を調整することにより行う。
- ビーム強度は実験ハッチ内のイオンチェンバーでモニターする。
- 調整完了後
 - ビーム中心は実験ハッチ内4Dスリットの中心と一致している。
 - 定位置出射状態になっている。
 - 指定したビームサイズになっている。

1-3 調整操作の概要

- 調整操作前に必要な準備作業を行う。
- 調整操作は、制御用ユー ザーPC(PHOBOS)から制御 プログラムを 用いて、半自動的に行う。
- プログラム上でオペレイターが操作するのは、以下の2つのみである。
 - パラメーターSetup窓の入力
 - プログラム動作中に現れる確認窓のOKボタン OK 及びMoveボタン Move のクリック
- 制御プログラムは、LabVIEW12.0/WinNTにより記述されている。

1-4 注意項目

- 調整実行者および時間帯に関する規則
 - 輸送系調整は原則的にユーザーが行うものとする。
 - 輸送系調整はビームライン担当者から許可を与えられた者のみが行うことができるものとする。
 - 従ってビームタイムには、最低一名は調整操作許可を受けた熟練者メンバーが参加することが必要となる。
 - 許可が与えられる条件は以下の通り
 - 輸送系の構成及び動作原理を理解していること。
 - 各光学素子の機能及びビームラインにおける役割を理解していること。
 - 調整プログラムがどのような調整手順に従って動作しているか理解していること。
 - 自動調整過程でどのような現象が起こったら異常であるか理解していること。
 - ○輸送系調整は、基本的には平日の9:30-17:30のビームライン担当者が現場に直行できる時間帯のみとする。
 - 上記以外の時間帯に調整を希望する場合は、ビームライン担当者の許可を受けること。
- 輸送系の設定条件を決定するにあたり、ユーザーは必要に応じ、予めビームライン担当者と相談すること。
 シンテ条件とは、公共業の結果面、ミューの傾き角、みびスリットの幅を指す。
 - 設定条件とは、分光器の結晶面、ミラーの傾き角、及びスリットの幅を指す。

2 分光器の結晶面及びミラーの傾き角度調整手順

2-1 プログラム起動前の準備

- •実験ハッチ内のIOイオンチェンバーで入射光強度が計測可能な状態にする。
 - イオンチェンバーにXAFS測定を行うエネルギー領域に対応した種類のガスを流す。
 - ・ ガスの種類は、I0:10-30 %吸収、I1:80-90%吸収になるよう選択する。ビームラインの技術情報、ユーティリティ ソフトの「イオンチェンバーのガス選択の例」参考。
 - 各ガスの各エネルギーに対する吸収率は、「イオンチェンバーのガス選択の例」のMS-Exelのファイルをを用いて計算することができる。
 - イオンチェンバーのHVを1000 Vに接続する。
 - 実験ハッチ退出前の確認項目:
 - 実験ハッチ内の定盤が上下移動するので、計測機器のケーブル類が引っかかったり、挟まったりしない ことを確認すること。
 - 光学ハッチ、実験ハッチを正常閉にする。
 - MBSをcloseする。
 - DSSをcloseする。
 - Beamline Work StaionのX端末の光学ハッチ内機器のGUIは、十分に安定となったので、<u>再起動しないこと</u>。
 必要が生じてX端末の再起動を行う場合は、appendix Aの手順に従うこと。
 - User PC PHOBOSは再起動してはいけない。(再起動した場合、ビームライン担当者に連絡すること)
- 実験ハッチ内機器用のパルスモーターコントローラーPM16C Aの パワーがONになっていることを確認する。(PCの 横の19インチラック内にある)
- 実験ハッチ内機器用のパルスモータードライバーのパワーがONになっていること(インジケータランプの点灯)を確認する。(パルスモーターコントローラー PM16C Aの下段にある)

 制御する軸は、Channel 0~4の5軸である。
- 分光器ブラッグ角を計測しているエンコーダーの表示が正常であることを確認する。
 - PCを再起動すると、エンコーダーの表示がErr 3となる。
 - Err 3と表示されている場合、CLボタンを押し、正常値を表示させること。

2-2 プログラム動作中の注意点

- 操作初心者は、プログラムスタート前に、Appendix B のオペレイターがプログラムの進行中に行う作業を参照すること。
- ・機器動作中に異音(ガリガリ音等)が発生した場合、直ちにプログラムを停止し、ビームライン担当者に連絡する。
 モーターギア類が噛んでいる可能性がある。

- 停止はStopボタン をクリックする。
 ・ パラメーターSetup窓に入力したパラメーターを途中で変更したくなった場合、プログラムを一旦停止し、ビームライン 担当者に連絡する。
- 機器の接続の不備(例:イオンチェンバーの配線ミス)に気づいた場合、プログラムを一旦停止し、ビームライン担当 者に連絡する。 プログラムの 停止は、OPTICS窓のStopボタン 🖲 をクリックすること。

2-3 制御プログラムの起動

- Menu3.viを開き、「Optics」タブのメニュー窓から V を選択する。 Menu3.vi File Edit View Project Operate Tools Window Help MENU 2 \$ & ● **Ⅱ** Optics scan-move XAFS Detector in-situ ¥ category
 - Runボタン 🕑 クリックし、Optics2.viを開く

DPTICS2.VI	
File Edit View Project Operate Tools Window Help	
	<u>۲۲ 8</u>
Lice Satur	in a state of the
user secup	start
Select Net Plane Ø/degree 1st Mirror Angle 2nd Mirror Angle 4D Slit open was fixed	OK
Si(11) V 9.8000 3.85 mrad 3.85 mrad at 0.8(V)*1.0(H)mm.) Initialize
2nd Mirror focus point	Create Data Log1
0.250 m	Set High Speed
Advanced Setup for Staff	Set Netplane & Mirror & Silt Position
TC Slit 1width TC Slit 2 width TC Slit 3 width 1st Mirror Bend TC Stage	Set Current Amp. to 100-8
4.00 mm 10.00 mm -51323 pulse Auto	A01 Motor Scan A01 24368 pulse
TC Slit 1 height TC Slit 2 height TC Slit 3 height 2nd Mirror Bend TC Stage Height	Δθ1 Piezo Scan 1 Piezo -0 131
20.50 ratio + 0.50 mm + 20.50 mm	4D Slit Horizontal Scan 1
TC Slit 1 height TC Slit 2 height TC Slit 3 height 2nd Mirror Bend	Δθ1 Piezo Scan 2
1.92 2.92 mm 2.92 mm ON attention!!	2nd Mirror Scan
TC Slit 2 Center TC Slit 3 Center 2nd Mirror Center Stage 2r	nd Mirror Vertical 0.56 mm
0.50 mm 1.18 mm 0.36 mm 145796 pulse	TC Slit 2 Scan
TC2SlitScan TC3SlitScan 2ndMirrorScan TC	C Slit 2 Vertical 0.58 mm
	TC Slit 3 Scan
Present Position	
Present Net Plane Present 1st Mirror Angle Present 2nd Mirror Angle Present TC Stage	Stage Scan Stage 185406 pulse
111 3.85 mrad 3.85 mrad 283.00 m	Set Slit to Destination
	Set Mirror & Slit Middle Speed
Present 0/degree Present 1st Mirror Ver Present 2nd Mirror Vertical	Create Data Log2
Present∆θ1 Present 1st Mirror Bend Present 2nd Mirror Bend 4D Slit width	
-1100C pulse -51323 pulse -11694 pulse 1.000 mm	
PresentΔθ2 Present Piezo	
0 0.000	
Present a1 Present TC Slit 2 Vertical Present TC Slit 3 vertical Present Stage	
-59032 0.58 mm 1.71 mm 145796 pulse	
Present TC Slit 1 height Present TC Slit 2 height Present TC Slit 3 height Present 4D Slit height	
1.92 mm 2.92 mm 2.92 mm 0.800 mm	
C C C C C C C C C C C C C C C C C C C	

- Runボタン 🕑 をクリックする。
 - 。 Initialize が一瞬赤点滅し、すぐに黒点灯になる。
 - 各光学素子の現在位置が読み取られ、パラメーターSetup窓に表示される。

User Setup		
Select Net Plane 0/degree Si(111) Otheracoffset(deg) O 0	1st Mirror Angle 2nd Mirror Angle 3.85 mrad 3.85 2nd Mirror focus point 0.250 m	4D Slit open was fixed at 0.8(V)*1.0(H)mm.

2-4 Setup窓内のパラメーターの入力

- パラメーターはビームラインのマニュアル、技術情報
 等を参照してユーザーが決定する。
 必要に応じてビームライン担当者と相談すること。
 注意:ユーザー設定窓以外の窓内のパラメーターは決して変更してはならない。
 分光器の面切着えを行うまたたの設定
- - Select Net Planeで変更先の結晶面を選択する。
 - Si(733)は現在立ち上げ中なので、使用しないこと。 Select Net Plane

- 分光器のブラッグ角の移動先を入力する。
 - 実際にXAFSを測定する角度領域に設定すること。

- 注意:プログラムの都合上、当面の間、<u>ブラッグ角を20(deg)以下に設定すること</u>。XAFSスキャンは20 (deg)以上で行っても問題ない。
- ミラーの傾き角変更を行う場合の設定
 - ミラーの傾き角の目安(BL01B1のミラーに対する経験式)
 - 2003年2月14日より両ミラーの<u>傾き角原点が-0.15mrad補正されたので、設定に注意すること。</u>
 - 例えば、003年2月14日以前に1.5mradに設定していた測定は、1.35mradに設定すること。
 - ミラーの傾き角を θ (mrad)、XAFS測定を行う際のエネルギーの最大値をEmax (keV)とすると、 *θ* =(60/(Emax+3))=0.15 Emax < 15 keV *θ* =(50/Emax)=0.15 Emax > 15 keV
 - 第1ミラーの傾き角を入力する。(単位mrad)

ミラーを光軸から外す場合(使用しない場合) 0 mradと入力すること。 1st Mirror Angle 3.85 mrad

第2ミラーの傾き角を入力する。(単位mrad)

実験条件によっては、第1ミラーと第2ミラーの傾き角を異なる値に設定することが可能。

ミラーを光軸から外す場合(使用しない場合) 0 mradと入力すること。

2nd Mirror Angle

- 第2ミラーにより集光する場合、フォーカス点の位置を入力する。フォーカス点の位置は、実験ハッチ内の4象限 スリット(4DSLITと呼ぶ)からフォーカス点までの距離を入力する(下流が+)。多少のずれ(±0.4(m))は問題 ない。
 - 試料位置がIOイオンチェンバーの直下流の場合の場合:0.25 m
 - 試料位置が2軸回折計(θ-2θステージ)上の場合(斜入射薄膜試料等):0.6 m
 2nd Mirror focus point
 - 0.250 m
- 光学素子調整中、実験ハッチ内定盤上の4象限スリット(4DSLIT)は縦幅(height)0.8 mm, 横幅(width)1.0 mm)で固定 されている。
 - スリット幅は、本プログラム終了後に、別のプログラム4DSLIT moveにより変更することが可能である。
 現在、4DSLITのリミットの動作不良のため、横幅は0.1 mm以下に閉めないこと。
- 他の窓のパラメーターに触ると動作に重大な支障をきたす恐れがあるため、触れないこと。特に変更を希望する場合、ビームライン担当者に連絡すること。

2-5 プログラムのスタート

• Start OKボタン をクリ

- art OKボタン をクリックする。 ○ 窓の右に並んだステップが上から順に自動的に行われる。
 - 動作中のステップは、赤表示灯が点滅し、駆動軸の窓が赤点滅する。(すぐに終了するステップは一瞬の 赤点滅後すぐに黒点灯となる。)
 - 動作完了したステップには、黒表示灯が点灯する。

Check BL-WS GUII OK Cancel が表示される。 • BL-WSのGUIを再起動したことを確認後、OKボタンをクリックする。
Check I0 gas! OK Cancel が表示される。 ○ IOイオンチェンバーに正しいガスを流したことを確認後、OKボタンをクリックする。
Close MBS&DSSI OK OK OK の が表示される。 OK MBS及びDSSをCloseしたことを確認後、OKボタンをクリックする。

- この操作は、分光器及びミラー移動動作中に白色放射光が機器の想定外の箇所に照射しないようにするため の処置である。
- 🔮 Create Data Log1
 - Create Data Log1 が一瞬のみ赤点滅し、黒点灯に変わる。
 光学素子の各軸の調整前の位置が、ファイルに記録される。
 - ファイルは、User PC PHOBOSの¥c¥user¥BL01B1_data¥Optics_logに日付の名前のついたフォルダーが新規 作成され、その中に作成される。
- Set High Speed が一瞬のみ赤点滅し、黒点灯に変わる。 ○ 光学素子の各軸の移動速度がHigh Speedに設定される。
- Set Netplane & Mirror & Slit Position
 - が赤点滅する。 ○ 各光学素子が所定の位置にHigh Speedで送られる。
 ○ 全軸に対し一斉にコマンドが送られる。

 - 所要時間の目安
 - Si(311)-Si(111)切り替え:6分
 - Si(311)-Si(511)切り替え:2分
 - ミラー傾き角変更:5分
 - パラメーターに現在位置と変更がない場合、移動なしと判断される。
 - ○ミラー、分光器、スリット等が所定の位置に移動完了後、傾斜架台が移動する。

File Edit View Project Operation ・ (1) ・ ・ (1)	TCStage_TCP_R
with a second s	File Edit View Project Ope
destination (23.46) が表示される。 o が表示される。 ・ 傾斜架台の移動目標位置していた。 (1) ・ 頃在位置が、ディスブレイモニターにも表示される。 (1) ・ 男な位置が、ディスブレイモニターにも表示される。 (1) ・ 男な位置が、ディスブレイモニターにも表示される。 (1) ・ 男性な道をの御門前までは高速で移動し、以後は体速で移動する。 ・ ・ 目標位置の間にはよりいm細程ののずれが生ずる場合があるが、その程度のずれは問題ないのでそのままブログウムを進める。 ・ ・ 日標位置の間にはたりいm細程ののずれが生ずる場合があるが、その程度のずれは問題ないのでそのままブログウムを進める。 ・ ・ 男常も感し ・ ・ 単体位置を通りすぎてきなき。 ・ ・ 男常も感し ・ ・ 単体位置を通りすぎて移動 ・ ・ 日標位置を回りすぎて移動 ・ ・ 日本し登しりすぎて移動 ・ ・ 日本し登しりすぎて移動 ・ ・ 日本し登しりすぎて移動 ・ ・ 日本し登しりすぎて移動 ・ ・ 日本し登しりきでものの ・ ・ 日本し登しりきでもの ・ ・ 中本のでに対したがったの、	
	destination 283.46
	present position
formula in the initial	283.00
	(STOP)
 が表示される。 (解斜架台の移動目標位置は) (原斜架台の移動目標位置は) (示され。) (原本位置が) (示され、移動先に近づく過程が表示される。) (現在位置が) (示され、移動先に近づく過程が表示される。) (日標位置の2mm手前までは高速で移動し、以後は低速で移動する。 (日標位置と到達位置の間には±0.1mm程度のずれが生ずる場合があるが、その程度のずれは問題ない のでそのままプロウシムを進める。 (日標位置と到達位置の間には±0.1mm程度のずれが生ずる場合があるが、その程度のずれは問題ない のでそのままプロウムを進める。 (日標位置と利したり1mm程度のずれが生ずる場合があるが、その程度のずれは問題ない のでそのままプロウムを進める。 (日標位置に対し反対の方向に移動 (日標位置に対し反対の方向に移動 (日標位置を通りすぎて移動 (日標位置を通りすぎて移動 (日標位置を通りすぎて移動 (日本の置) (日本の動) (日本の置) (日本の置	Object
・ 傾斜架台の移動目標位置は 「こ示され、移動先に近づく過程が表示される。 ・ 現在位置が 「こ示され、移動先に近づく過程が表示される。 ・ 現在位置は、ディスプレイモニターにも表示される。 ・ 現在位置の1 ・ 現在位置でが 「こ示され、移動先に近づく過程が表示される。 ・ 現在位置と到達位置の間には±0.1mm程度のずれが生ずる場合があるが、その程度のずれは問題ないのでそのままプログラムを進める。 ・ 目標位置と到達位置の間には±0.1mm程度のずれが生ずる場合があるが、その程度のずれは問題ないのでそのままプログラムを進める。 ・ 異常事態の場合 ・ まず、緊急停止ボタン ・ まず、緊急停止ボタン ・ 要常事態の例合 ・ まず、緊急停止ボタン ・ 要求事態の例 ・ 目標位置を通りすぎて移動 ・ 日標位置を通りすぎて移動 ・ 日本ののTMiddle Speed ・ 日本ののを軸の移動速度がMiddle Speedに設定される。 ・ Set Urrent Amp. to 10 ⁻¹ が未点滅し、ビーと鳴る。 ・ わレントアンブのレンジが10 [*] 81<	。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
 ・ 傾斜架台の移動目標位置は ● 傾斜架台の移動目標位置は、 ● 現在位置が ● 現在位置が ● ご示され、移動先に近づく過程が表示される。 ● 現在位置の2mm手前までは高速で移動し、以後は低速で移動する。 ● 目標位置の2mm手前までは高速で移動し、以後は低速で移動する。 ● 目標位置と到達位置の間には±0.1mm程度のずれが生ずる場合があるが、その程度のずれは問題ないのでそのままプログラムを進める。 ● 異常事態の場合 ● まず、緊急停止ボタン ● なりいクし、傾斜架台を停止すること。 ● 実常事態の例 ● 目標位置に対し反対の方向に移動 ● 目標位置に対し反対の方向に移動 ● 目標位置に対し反対の方向に移動 ● 目標位置を通りすぎて移動 ● モーターギア類に異音発生 ● Set Monochromator Middle Speed が 一瞬だけ赤点滅し、黒点灯に変わる。 ● スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 ● Set Current Amp. to 10~8 が赤点滅し、ビーと鳴る。 ● のカレントアンプのレンジが10~81と設定される。 ● ごれは調整中にレンジオーバーさせないための対応である。 ● ゴーと鳴るのは10カレントアンプのレンジ変更時に発生した電気ノイズのためであり、正常な応答であるので、 まにしなくて良い。 ● プレック・	destination
 現在位置が こ示され、移動先に近づく過程が表示される。 現在位置は、ディスプレイモニターにも表示される。 目標位置の2mm手前までは高速で移動し、以後は低速で移動する。 目標位置と到達位置の間には±0.1mm程度のずれが生ずる場合があるが、その程度のずれは問題ないのでそのままプログラムを進める。 異常事態の間には±0.1mm程度のずれが生ずる場合があるが、その程度のずれは問題ないのでそのままプログラムを進める。 異常事態の場合 まず、緊急停止ボタン をクリックし、傾斜架台を停止すること。 次にビームライン担当者に直ちに連絡すること。 異常事態の例: 目標位置に対し反対の方向に移動 目標位置に対し反対の方向に移動 目標位置を通りすぎて移動 モーターギア類に異音発生 Set Monochromator Middle Speed が一瞬だけ赤点滅し、黒点灯に変わる。 スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 シロケンプのレンジが10%に設定される。 これは調整中にレンジオーバーさせないための対応である。 ピーと鳴るのはのカレントアンプのレンジ変更時に発生した電気ノイズのためであり、正常な応答であるので、 なししなくて良い。 	■ 傾斜架台の移動目標位置は 283.45 に示される。
 現在位置が「「マスプレイモニターにも表示される。 現在位置は、ディスプレイモニターにも表示される。 目標位置の2mm手前までは高速で移動し、以後は低速で移動する。 目標位置と到達位置の間には±0.1mm程度のずれが生ずる場合があるが、その程度のずれは問題ないのでそのままプログラムを進める。 異常事態の場合 まず、緊急停止ボタン をクリックし、傾斜架台を停止すること。 次にビームライン担当者に直ちに連絡すること。 異常事態の例: 目標位置に対し反対の方向に移動 目標位置を通りすぎて移動 モーターギア類に異音発生 Set Monochromator Midde Speed が一瞬だけ赤点滅し、黒点灯に変わる。 スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 Set Current Amp. to 10⁻⁸ が赤点滅し、ピーと鳴る。 10カレントアンプのレンジが10[*]81に設定される。 これは調整中にレンジオーバーさせないための対応である。 ビーと鳴るのは10カレントアンプのレンジ変更時に発生した電気ノイズのためであり、正常な応答であるので、気にしなくて良い。 	present position
 目標位置の2mm手前までは高速で移動し、以後は低速で移動する。 目標位置の2mm手前までは高速で移動し、以後は低速で移動する。 目標位置の間には±0.1mm程度のずれが生ずる場合があるが、その程度のずれは問題ないのでそのままプログラムを進める。 異常事態の場合 ● 異常事態の場合 ● まず、緊急停止ボタン ● をクリックし、傾斜架台を停止すること。 ● 次にビームライン担当者に直ちに連絡すること。 ● 異常事態の例: ● 目標位置に対し反対の方向に移動 ● 目標位置に対し反対の方向に移動 ● 目標位置に対し反対の方向に移動 ● 目標位置を通りすぎて移動 ● モーターギア類に異音発生 ● Set Monochromator Middle Speed が一瞬だけ赤点滅し、黒点灯に変わる。 ○ スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 ● Set Current Amp. to 10^-8	■ 現在位置が Leonon に示され、移動先に近づく過程が表示される。 ■ 現在位置は、ディスプレイモニターにも表示される。
のでそのままプログラムを進める。 - 異常事態の場合 - まず、緊急停止ボタン をクリックし、傾斜架台を停止すること。 - 次にビームライン担当者に直ちに連絡すること。 - 異常事態の例: - 目標位置に対し反対の方向に移動 - 目標位置を通りすぎて移動 - モーターギア類に異音発生 - Set Monochromator Middle Speed が一瞬だけ赤点滅し、黒点灯に変わる。 - スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 - スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 - これは調整中にレンジオーバーさせないための対応である。 - これは調整中にレンジオーバーさせないための対応である。 - ピーと鳴るのは10カレントアンプのレンジ変更時に発生した電気ノイズのためであり、正常な応答であるので、 気にしなくて良い。	■ 目標位置の2mm手前までは高速で移動し、以後は低速で移動する。 ■ 目標位置と到達位置の間には±0.1mm程度のずれが生ずる場合があるが、その程度のずれは問題ない
 まず、緊急停止ボタン をクリックし、傾斜架台を停止すること。 次にビームライン担当者に直ちに連絡すること。 異常事態の例: 目標位置に対し反対の方向に移動 目標位置を通りすぎて移動 モーターギア類に異音発生 Set Monochromator Middle Speed が一瞬だけ赤点滅し、黒点灯に変わる。 スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 Set Current Amp. to 10^-8 が赤点滅し、ピーと鳴る。 ロカレントアンプのレンジが10[°]8に設定される。 これは調整中にレンジオーバーさせないための対応である。 ピーと鳴るのはIDカレントアンプのレンジ変更時に発生した電気ノイズのためであり、正常な応答であるので、気にしなくて良い。 	のでそのままプログラムを進め る。 ■ 異常事態の場合
 まず、緊急停止ボタン をクリックし、傾斜架台を停止すること。 次にビームライン担当者に直ちに連絡すること。 異常事態の例: 目標位置に対し反対の方向に移動 目標位置を通りすぎて移動 モーターギア類に異音発生 Set Monochromator Middle Speed が一瞬だけ赤点滅し、黒点灯に変わる。 スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 Set Current Amp. to 10^-8 が赤点滅し、ピーと鳴る。 ロカレントアンプのレンジが10[®]8に設定される。 これは調整中にレンジオーバーさせないための対応である。 ピーと鳴るのは10カレントアンプのレンジ変更時に発生した電気ノイズのためであり、正常な応答であるので、気にしなくて良い。 	(STOP)
 実常事態の例: 目標位置に対し反対の方向に移動 目標位置を通りすぎて移動 モーターギア類に異音発生 Set Monochromator Middle Speed が一瞬だけ赤点滅し、黒点灯に変わる。 スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 Set Current Amp. to 10^-8 が赤点滅し、ピーと鳴る。 IOカレントアンプのレンジが10⁻⁸に設定される。 これは調整中にレンジオーバーさせないための対応である。 ピーと鳴るのはIOカレントアンプのレンジ変更時に発生した電気ノイズのためであり、正常な応答であるので、気にしなくて良い。 	■ まず、緊急停止ボタン をクリックし、傾斜架台を停止すること。 ■ 次にビームライン担当者に直ちに連絡すること
 ■ 目標位置に対し反対の方向に参勤 ■ 目標位置を通りすぎて移動 ■ モーターギア類に異音発生 Set Monochromator Middle Speed が一瞬だけ赤点滅し、黒点灯に変わる。 ○ スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 Set Current Amp. to 10^-8 が赤点滅し、ピーと鳴る。 ○ IDカレントアンプのレンジが10[*]8に設定される。 ○ これは調整中にレンジオーバーさせないための対応である。 ○ ピーと鳴るのはIDカレントアンプのレンジ変更時に発生した電気ノイズのためであり、正常な応答であるので、 気にしなくて良い。 	
 モーターキア類に異音発生 Set Monochromator Middle Speed スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 Set Current Amp. to 10^-8 が赤点滅し、ピーと鳴る。 IOカレントアンプのレンジが10⁸に設定される。 これは調整中にレンジオーバーさせないための対応である。 ピーと鳴るのはIOカレントアンプのレンジ変更時に発生した電気ノイズのためであり、正常な応答であるので、 気にしなくて良い。 	
 ○ スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。 ● Set Current Amp. to 10^-8 が赤点滅し、ピーと鳴る。 ○ I0カレントアンプのレンジが10⁸に設定される。 ○ これは調整中にレンジオーバーさせないための対応である。 ○ ピーと鳴るのはI0カレントアンプのレンジ変更時に発生した電気ノイズのためであり、正常な応答であるので、気にしなくて良い。 	■ モーターキア類に異首発生 Set Monochromator Middle Speed が一時だけまち減し 里方灯に変 わる
 Set Current Amp. to 10^-8 が赤点滅し、ピーと鳴る。 IDカレントアンプのレンジが10⁸に設定される。 これは調整中にレンジオーバーさせないための対応である。 ピーと鳴るのはIDカレントアンプのレンジ変更時に発生した電気ノイズのためであり、正常な応答であるので、 気にしなくて良い。 	○ スキャン動作に対応するため、分光器の各軸の移動速度がMiddle Speedに設定される。
 これは調整中にレンジオーバーさせないための対応である。 ピーと鳴るのはI0カレントアンプのレンジ変更時に発生した電気ノイズのためであり、正常な応答であるので、 気にしなくて良い。 Open MBS&DSSI 	 ● Set Current Amp. to 10^-8 が赤点滅し、ピーと鳴る。 ○ 10カレントアンプのレンジが10^8に設定される
	○ これは調整中にレンジオーバーさせないための対応である。
Open MBS&DSS!	して一と時るのはIDカレンドアングのレング変更時に完全した電気グイスのためであり、正常な応告でのるので、 気にしなくて良い。
Open MBS&DSS!	
	Open MBS&DSS!
。 	。

- MBS及びDSSをopenした後、OKボタンをクリックする。
- 以降のステップでは、実験ハッチ内のIOイオンチェンバーによりビーム強度をモニターしながら調整が行われる。

12 4D-SLIT-SCAN_TCP.VI	Tools Window Lists		
	Tools willdow Help		2
Ring Lower Hall 1 ♥3 ♥2	Upper PM16C_IPaddress 4 I92.168.3.55		
Measure Start mm Start mr	step mm Dest. mm Axis(0:H, 1 0.200 \$7.000 horizontal	V) Height mm Width mm Preset (Set 15.000 1.000 0.10	Counter CT08-01B
PeakSelect Peak/mm Peak Co I0 -1.200 423665	FWHM/mm Center/mm End CH1 or 1.827 -1.410 -0.486	CH3/mm End Posotion Vertical mm H	orizontal mm Back f
19SSD Counter MDS Config.	File or xMap ini File	Start Speed	pulse/mm Off:
no use 🔻 &C:¥usr¥BL0	1_Data¥xMap_ini¥	Read OK Middl	- 500.00 mm
4509000 4006 3506 3006 2506	f	10 ▲▲ 11 ▲▲ 12 ▲▲ ブロット▲▲ 第1	\$324 End bin \$324 splay Channel (-1: A
1500 1000 5000	\square	10 -3.8 5 11 -0.2	00 17400
-7.000 -4.000	-2.000 0.000 2.000 4.000	7.000 Save 771MPス(空の場	島合、 9* 1707*)
←Ring Slit v s I1/I0		→Hall OFF %BL01_data¥	
•	m		

- スキャンが正常に行われていることを確認する。
 分光器の定位置出射条件が満足されている場合、ビームが4D Slitの水平中心に来るように4D Slitは調整され
- ている。 ビームの水平位置のずれから、分光器第一結晶のあおり角の補正量Δα(pulse)が計算される。(スリットのず れ量とは直接対応していない。)

Pos_Dial	
File Edit View Project Pos.	
Axis	
Move ∆a for E	
429.068	
OK Cancel	
	が表示される +429 pulse)を記録する
○ スキャンが正常に行われてい	ることを確認後、OKボタンをクリックする。
○ Δαが補正量分移動する。	
4D Clit Porcan?	
a=429pulse	
Δα >10p u lse : OK(Rescan) Δα <10p u lse : Cancel(Next Step)	
OK Cancel	
	が表示される。
 ○ Δ α<-10または10<Δ α の場 ○ -10<Δ α<10 になったら、キ 	合、OKホタンをクリックする。 ャンセルボタンをクリックする。
○ -10< $\Delta \alpha$ <10 になるまで、 Δ ○ Rescan容でOKボタンを囲す	αの調整を繰り返す。 限り Δαの調整段階から次の段階に進むことが出来ない
 ■ ヒーム水平万回の中心 ■ 定位置出射が実現され 	と4Dスリットの中心か一致する。 る。
• ● △01 Piezo Scan 2 が赤点滅する	D ₀
○ この操作は、分光器第一結晶	のあおり角の調整により生じた傾き角のずれを調整するために行う。
Δθ1 Piezo Scan(2)?	

が表示されるので、OKボタンをクリックする。

○ 分光器のロッキングカーブスキャンがPiezo Actuatorで行われる。

Cancel

OK

■ 測定開始位置に移動するまで1分程要する。

- Stopボタンが 🖲 → 🛄 になっている。
- _____の全ステップの ■____が黒点灯になっている。
- プログラムの完了を確認後、下記の操作を行う。
 - 各スキャン動作の際に表示された窓を、右上のCloseボタン max をクリックしてCloseすること。

ビームラインワークステーションの再起動方法

• 操作は下記の手順で行うこと。

(「ビームラインワークステーションの使い方」 <u>http://okutsu.spring8.or.jp/blcntl/Man_GUI/cde/cde.html</u> より改転 載)

○ GUIを停止する。

○「掃除」する。

フロントパネルのメインのアイコン をクリック!
• 再起動には1-2分要する。

Appendix B

オペレイターがプログラムの進行中に行う作業

- オペレイターは、プログラムの進行状況をディスプレイを見ながら、プログラムが正常に終了するまで確認すること。
- プログラムの進行中に確認窓が表示された場合の操作:
 オペレイターは以下の確認作業を行った後、OKボタンまたはMoveボタンをクリックする。
- 確認窓が表示される場合は大きく分けて3つある。
 ○次のスキャンを行ってよいかを問い合わせてきた場合:
 OKをクリックする。

■ 例:分光器第一結晶のスキャン OK?

Δθ1 Stepping	g Motor Scan(1)?
ОК	Cancel

- ○機器の設定状況を問い合わせてきた場合:
 - オペレイターは、機器が実際にその状態に設定(例:MBSがclose)されていることを確認する。
 - 設定されていなければ、設定作業を行った後、OKボタンをクリックする。
 - 例:MBS close, OK?

- 機器のスキャン(例:実験ハッチ内定盤のzスキャン)の後、プログラムで求められた最適位置に移動してよいか 問い合わせてきた場合:
 - オペレイターはIO強度のプロファイルをディスプレイ上で視認し、正常にスキャンが行われたことを確認する。
 - 正常なスキャンとは、下図のように、IO強度プロファイルが両側でピーク値の半値以下まで減少する範囲でスキャンが行われている状態である。
 - プログラムではプロファイルのピーク値の半値となる位置をピークの両側で求め、その中心位置を計算し、それを最適位置としている。

に示される。

■ 求められた最適位置がプロファイルの中心付近にあることを視認により確認する。

File Ec	lit V	iew	Project	Op	erimou	JΕ
	*		11	3	RESCI	AN
D	estina	tion				*
1	10958					
S	can St	en				
\$5	0.00					
1 5 S	0.00 can Ple	 	tal			m
SC SC SC	0.00 can Plo	ot To	tal			HI
SC N N N N N	0.00 can Plo 0		tal	1		H

Destination

- -109580
- 以上が確認できたら、MoveボタンをクリックするとDestination位置 ¹⁰⁹⁵⁸ に移動する。
 スキャン範囲が適当でなかった場合、もしくはプログラムで求められた最適位置がプロファイルの中心と 明らかにずれていた場合

- -10958 にスキャンの中心を入力する。 ■ Destination窓
- scanボタン Scan を クリックする。

以上。